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Lecture 1 boundary-layer flow

Let us examine a limiting case of the Navier-Stokes equations,
dw/dt=f-(1/p) gradp + v Aw,
where w is the velocity vector, t is the time, f is the external forces, p is the fluid density, p is
the pressure, and v is the kinematic viscosity of the fluid. namely that of very small viscosity
or large Reynolds number. = We shall explain these simplifications with the aid of an
argument which preserves the physical picture of the phenomenon, and it will be recalled that
in the bulk of the fluid inertia forces predominate, the influence of viscous forces being
vanishingly small.

For the sake of simplicity, we shall consider two-dimensional flow of a fluid with very small
viscosity over a horizontal plate, Fig.1.1, about a cylindrical body of slender cross-section,

Fig.1.2 and about an airfoil, Fig.1.3, respectively.

Fig.1.1 Two-dimensional flow with very small viscosity over a horizontal plate



Fig.1.2 Boundary-layer separation over the cylindrical surface.
After Prandtl-Tietjens(1934).

Fig.1.3 Flow around an airfoil when it separates.
After Prandtl-Tietjens(1934)

With the exception of the immediate neighborhood of the surface, the velocities are of the
order of the free-stream velocity, V, and the pattern of streamlines and the velocity

distribution deviate only slightly from those in frictionless potential flow. = However,



detailed investigations reveal that, unlike in potential flow to the full magnitude, the fluid does

not slide over the wall, but adheres to it.  The transition from zero velocity at the wall at

some distance from it takes place in a very thin layer, the so-called boundary layer.  In this

manner, there are two regions to consider, even if the division between them is not very sharp:

1. Avery thin layer in the immediate neighborhood of the body in which the velocity gradient
normal to the wall, du/ dy, is very large. In this region the very small viscosity u of
the fluid exerts an essential influence in so far as he shearing stress 7 =y (9 u/ dy) may
assume large values.

2. In the remaining region no such large velocity gradients occur and the influence of

viscosity is not important.  In this region the flow is frictionless and potential.

In general, it is possible to state the thickness of the boundary layer increases with
increasing viscosity. It was seen from several exact solutions of the Navier-Stokes
equations:
d~v12,

When making the simplifications to be introduced into the Navier-Stokes equations it is
assumed that this thickness is very small compared with a still unspecified linear dimension,
L, of the body:

é <L.

In this way the solution obtained from the boundary-layer equations are asymptotic and apply
to very large Reynolds numbers.

We shall now proceed to discuss the simplification of the Navier-Stokes equation and in
order to achieve it, we shall make an estimate of the order of magnitude of each term. In
the two-dimensional problem, we shall begin by assuming the wall to be flat and coinciding
with the x-direction, the y-axis being perpendicular to it. Write the Navier-Stokes
equations in dimensionless form by referring all velocities to the free-stream velocity, V, and
by referring all linear dimensions to a characteristic length, L, of the body, which is so selected
as to ensure that the dimensionless derivative, d u/ dx, does not exceed unity in the region
under consideration.  The pressure is made dimensionless with p V?, and time is referred
to L/V.  Further, the expression
R=VLp/u=VL/v
denotes the Reynolds number which is assumed very large. Under these assumptions, and
retaining the same symbols for the dimensionless quantities as for their dimensional
counterparts, we have from the Navier-Stokes equations for plane flow accompanying

separation(Fig.1.4):



Fig.1.4 Two-dimensional boundary-layer flow accompanying separation in the downstream.
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The boundary conditions are: absence of slip between the fluid and the wall, i.e.
u=v= 0 for y=0, and u=V fory — oo,

With the assumptions made previously the dimensionless boundary-layer thickness, & /L,
for which we shall retain the symbol &, is very small with respect to unity, (6 <1).

The orders of magnitude are shown in (1) to (3) under the individual terms.  Assume
that the non-steady acceleration 9 u/ d t is of the same order as the convective term u- d u/ 9 x
which means that very sudden accelerations, such as occur in very large pressure waves, are
excluded. Some of the viscous terms must be of the same order of magnitude as the inertia
terms, at least in the immediate neighborhood of the wall, and in spite of the smallness of the
factor 1/R.  Hence, some of the second derivatives of velocity must become very large near
the wall.  This can only apply to d%u/dy? and d%v/dy?.  Since the component of
velocity parallel to the wall increases from zero at the wall to the value 1 in the freestream

across the layer of thickness §, we have
du/dy~1/8 and d2%u/dy*~1/62
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